

Advanced (bio)hydrometallurgical methods for the optimized extraction and beneficiation of Rare Earth Elements from Ion Adsorption Clays

Lisza Zeidler¹, Meinolf Stützer², Gotthard Kunze³, Sabine Kutschke⁴, Norbert Jordan⁵, Michael Haschke¹, Wilfried Hüls¹, Romy Matthies^{1*}

¹ G.U.B. Ingenieur AG, Glacisstr. 2, 01099, Dresden, ²GMBU, Halle (Saale), ³IPK Gatersleben, Stadt Seeland, ⁴ HZDR, Helmholtz Inst. Freiberg for Resource Technology, Freiberg, ⁵ HZDR, Inst. of Resource Ecology, Dresden; *romy.matthies@gub-ing.de; //r4-sem2.gub-ing.de/en

Challenge

- Rare Earth Elements (REE) are essential components of devices produced by the high-tech, green-energy and communication industry but are defined as critical raw materials due to their reduced short- and medium-term supply.
- Ion-adsorption clays (IAC) in China have been the main source of REE worldwide (≈ 80 %) for more than two decades.

 Traditionally applied extraction and processing techniques have caused severe environmental impact such as ground-water contamination, soil erosion and the loss of entire ecosystems.

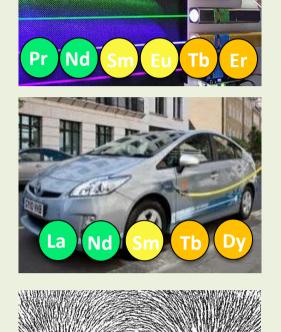
Objective

Develop efficient, economic and environmentally sustainable mining technologies for the extraction and processing of Rare Earth Elements from about 200 ion-adsorption clay deposits worldwide.

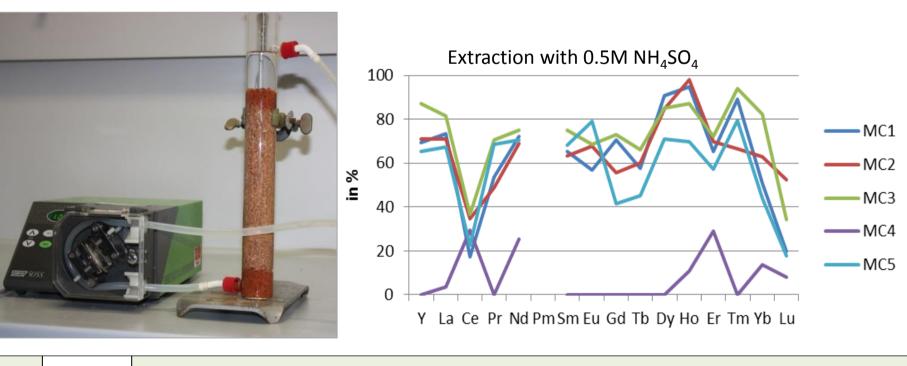
Developing an Alternative Bio-Mining Technology

In-Situ Recovery

- IAC assessment of physical properties (e.g. triaxial tests)
- Application of cryo-technology to enhance IAC permeability
- Develop environmentally sustainable injection and extraction technology for IAC deposits
- Devise best-practice guide on IAC extraction and processing



Leaching


• Ion-exchange based extraction of REE from ion-adsorption clays.

Bio-Leaching

• Assessment of bio-lixiviants e.g. cellular metabolites: tricarbonic acids, amino

- Evaluation of the leaching performance and selectivity of various lixiviants.
 Assessment of influencing parameters on leaching performance (particle
 - size, T, t, pH).
- Test of sequential leaching processes.

- acids, chelators and cell components: phospholipids.
- Biotechnological production of selected substances with established microbial strains.
- Application of biolixiviants as sole leaching agents or in combination with conventional lixiviants.

Organic Acids	Amino Acids	Chelators / Metallophores
 Yeast or Fungi PGA: <i>B. licheniformis</i> Oxalic Acid: <i>B. glumae</i> Acetic Acid: <i>K. xylinus</i> Citric Acid: <i>Y. lipolytica</i> 	 Corynebacteria Burkholderia Glutamic Acid: <i>C. collunae,</i> <i>C. stationis</i> 	 Bacilli <i>P. fluorescens</i> <i>S. melonis</i> <i>S. oneidensis</i>

Sorption

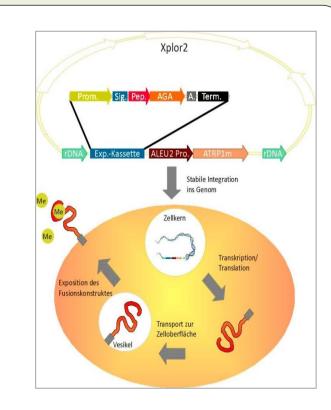
- Selection of suitable resins with sulfonic or carboxylic exchange groups (Monoplus S-108, S-100, SP112H, S100 G1, CNP80).
- Testing eluants for selective, fractionated elution (acids, amendment with complexants, pH).
- Optional: combination with precipitation.
- Comparison with liquid-liquid extraction using commercial extractants.

Geochemical Simulation

- Database consolidation.
- Experimental verification for Eu, Tb and Lu.
- Reverse modelling to derive thermodynamic parameters of REE sorption as site densities and affinities.
- Forward process modelling to optimize process efficiency.

Bio-Sorption

- Retention of REE on biomaterial: algae, cyanobacteria, duckweed, industrial by-products (chopped straw).
- Chemical surface modification, immobilization and stabilization, e.g. alginate beads.
- Sequential desorption of REE, application of e.g.: acids, complexing agents, alternative application of bioleaching agents.



Bio-Separation

- Identification of proteins with high selectivity for critical REE e.g. Prothrombinfragment binding Eu.
- Combine with cell membrane proteins.
- Transfer gene complex via Xplor[®]2 [2] into yeast cells (e.g. *S. cerevisiae*,
- A.Adeninivorans or H. polymorpha).
- Separation of REE via selective binding of single REE on genetically produced yeasts.

References: [1] Moldoveanu et al. 2013. Hydrometallurgy, v131-132 (158-166), [2] Böer et al. 2009. Applied Microbiology and Biotechnology, v84.3 (583-594).

